Further Maths Revision Paper 3

This paper consists of 5 questions covering CP1, CP2, FP1 and FM1. (AS Further Maths: Q1 and 3)

1

$$
P=\left(\begin{array}{ll}
4 & -2 \\
3 & -1
\end{array}\right)
$$

The matrix P represents a linear transformation, T, of the plane.
(a) Describe the invariant points of the transformation T.
(b) Describe the invariant lines of the transformation T.

2
The point P lies on the hyperbola with equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 .
$$

The points S and $S^{\prime \prime}$ are the foci of the hyperbola.
Show that $S^{\prime} P-S P=2 a$

3

(a) Obtain the Cartesian equation of the straight line which passes through the point $A(-1,2,3)$ and which is normal to the plane $2 x-3 y+4 z+8=0$
(b) Calculate the coordinates of P the point of the intersection of this line with the plane.
(c) If the point $B(a, 2 a, 3)$ lies on the plane, find the value of a and calculate the angle between $A P$ and $A B$ in degrees giving your answer to 1 decimal place.

4

A red ball is stationary on a rectangular billiard table $O A B C$.
It is then struck by a white ball of equal mass and equal radius with velocity $u(-2 \mathbf{i}+11 \mathbf{j})$ where \mathbf{i} and \mathbf{j} are unit vectors along $O A$ and $O C$ respectively.
After impact the red and white balls have velocities parallel to the vector $-3 \mathbf{i}+4 \mathbf{j}, 2 \mathbf{i}+4 \mathbf{j}$ respectively.
Show that the lines of centres on impact is parallel to $-3 \mathbf{i}+4 \mathbf{j}$

5

Use Taylor's theorem to evaluate

$$
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\cos x}{\left(x-\frac{\pi}{2}\right)}
$$

You may use:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^{n}}{n!}
$$

